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ABSTRACT

A renewal-reward model is developed to predict the

optimum amount of time that Coast Guard personnel should

spend investigating a vessel for illicit substances. The

optimal investigation time is determined with respect to

three criteria; maximizing the number of arrests,

maximizing the quantity of drugs confiscated, and

minimizing the quantity of drugs that escape detection. A

simulation study indicates that the optimal investigation

time is very sensitive to underlying distributional

assumptions. The basic service system model may have wider

application, i.e., to combat modelling, where it may be

desirable to investigate a potential target to estimate its

value before committing limited resources. An adaption of

the model may also be of help in allocating resources for

mineral exploration. '-4 -4", ... - .
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I. INTRODUCTION

One duty of the United States Coast Guard is the

interdiction of drug smugglers. When Coast Guard personnel

board a suspect vessel to search for contraband, a decision

must be made regarding the amount of time allocated for the

investigation. If a careful, but lengthy, search is

conducted, there is a high probability of finding

contraband if it is present. However, a lengthy

investigation incurs a penalty. While Coast Guard

personnel are searching one vessel, other shipping, which

could have contraband onboard, is passing through the

patrol area without being examined. At the other extreme,

if the suspect vessel is examined in a cursory manner, the

Coast Guard Vessel (CGV) will be able to stop and search

more shipping but there is a higher probability of not

discovering the contraband, if present, because of the

short investigation time. The purpose of this thesis is to

develop a renewal-reward model to determine the optimum

investigation time.



II. RENEWAL-REWARD MODEL

Consider the following scenario. All shipping

encountered by a patrolling CGV is stopped and searched to

determine if contraband is onboard. After leaving port, a

CGV searcher a time Si until a vessel is sighted. A

detected vessel has a probability Pb of being Bad (having

contraband onboard) and Pa - 1 - Pb of being Good (having

no contraband onboard). A Bad vessel contains the random

number J = j(1,2,3,...) units of illicit substance with

probability bi. The time required to find the first unit

of the contraband, given that J units are present, is

modelled here as the minimum of J independent identically

distributed times having distribution function Fz (t); this

model is illustrative only, and may be altered in various

realistic directions. If time T is required to locate an

incriminating unit, then

P(T>TIJ-jl = [l-Fz(t)]J ; j=1,2,3,...

so, upon removing the condition,

1-FT(t) - PfT>tl = X [1-Fz(t)]Jb ; j=1,2,3 .... (2.1)

julj

Adopt the following decision rule: Establish a

predetermined investigation time L. When a vessel is

detected, it is stopped and searched. If no contraband is

2



discovered in the investigation time L, the vessel is

released and the CGV resumes patrol. If any contraband is

discovered before the end of the investigation time L, the

vessel is detained and escorted to port for further search

and investigation. A time period D is required to escort

the vessel to base. The patrol cycle ends when the

escorted vessel arrives at the base.

The long run average reward per cycle, R, can be

calculated in the following manner (Ross: pp. 279-294].

M[C]
R = (2.2)

E[C]

where: E(Rc] is the expected reward for a patrol
cycle.

E[C] is the expected duration of a patrol
cycle.

The reward associated with an apprehension can be defined

in various ways. Three different reward criteria will be

examined. For each of the three cases, we will determine

the optimal investigation time L which maximizes the long

run average cycle reward.

A. EXPECTED DURATION OF PATROL CYCLE: E[C]

We must distinguish between the following two cases for

the investigation time I:

Ig - an investigation time that results in the release of
the vessel.

lb - an investigation time that results in the detention
of the vessel.

3



Where

I I. = L with probability Pg + PbFT (L) = a
Ib = T with probability PbFT (L) --

The length of a CGV patrol cycle can be represented as:

C Si + Ib + CD With probability a(L)

Si + lb + D With probability ((L)C I p

where C' has the same unconditional distribution as C, for

if the first investigation results in a release of the

vessel being searched, the process re-starts (regenerates).

The expected length of a patrol cycle can be expressed

as:
(2.3)

EEC] = E[S] + (E[Ib] + E[D])a + (L + E(C'])1.

or

E(C] = E[S] + E[D]i + E[Ibl] + La (2.4)1 - %

which can be written as

E[C] - E[D] + E[Ib] + ; + L (2.5)

Solving for the term E[Ibli yields

F0 tFT (dt)
OE[Ib - (2.6)

E[Ib] = FT (L)

Integration by parts shows that

FT (tdt - Ft (L)L + tF(dt)
0(2.7)

4



Hence

"-FT (t)dt - LFT (L)

E[Ib] - (2.8)
FT (L)

Therefore

E[S] + E[D]PbFt (L) + Pb Fr(t)dt + LP.
E[C]=

Pb FT (L)
(2.9)

which reduces to

L-
E[C] = E[D] + E[S] + 0 FT (t)dt + p_L  (2.10)

PbFT (L) FT (L) PbFi (L)

B. REWARD CRITERIA 1

Suppose the CGV is rewarded for making an arrest.

Since only one arrest is made per cycle,

E[Rc] = 1 (2.11)

and from equation 2.2

1R= E[C] (2.12)

5



Consider the following example

Fz It) = 1 - e , . = 0.08

S(t) = 1 - e- it , = 1.1

D(t) = 1 - e -A z t , X2 = 0.3

bi = (1 - ) j-1 , = 0.8; j = 1,2 ....

Pb =0.2

From equation 2.1

-- - e- " t 11-n)
FT (t) - 1: (e-ut)J (1-0)-l = 1 (2.13)

j:1 1- Ae-ut

and

1 -e -Pt

Ft (t) = 1 - FT (t) = (2.14)
1 - 13e- t ",'

From equation 2.10, the expected duration of the patrol

cycle is

1 11-//0()>(l e-u L/)0
E[C] - + +

X2 P(1-eIL/1-Oe-L 1--UL/1-0e-PL)

Ps L
+ (2.15)

Pb - -

and from equation 2.12, the long run average reward per

cycle can be calculated.

6
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(:: X2Pb (2.16)

Pb \1 X + X1 (X2.~ (1b:e-u + Pg L,\t 2

C. REWARD CRITERIA 2

The reward assigned to the CGV is the amount of drugs

confiscated.

E[Rcl = E[JIT : L] (2.17)

The probability that a vessel being searched contains J -

j units of drugs and that the drugs are discovered is

P{(TgL)-(J-j)l =[1- (1-Fz(L))J]b, (2.18)

so

P1TSI-FT(L) = [ [1 - (1-Fz(L))Jb]j (2.19)

and thus

[i1 (1-Fz (L))JIb

Pf(J-j)I(TgL)l = (2.20)
Fi (L)

and
e I - -I

7 i[1 (-Fz (L) J jb (2.21)
j-21

FT (L)

7



using the parameters from the Example in Model 1,

3 - (e-UL)JiJ(-$)Ji
j:

E[JIF-L] = (2.22)
(1-e-ULe

which can be evaluated as in the previous example as

(-)[1/ (1- 2) - eu (1- e " "uL ))]E[JITSL]

(2.23)

using equation 2.2, the long run average reward is

R =E[J TsL]
E[C]

or (2.24)

1 e-uL

(-) ( (1-e-UL) )

e-ULR 
(10-

__ _ __( 1 - 0 ) L n ( 
1 - 0 e -U 

L  

:

1 X 1-0 Pc L
- + + +

2a Pb 1~--1AL 1eU b1eU

(-e- L 1-e- L 1-be- L)

D. REWARD CRITERIA 3

The reward examined in model three is the difference

between the quantity of drugs confiscated and the quantity

8



of drugs that escape detection. The expected reward in a

cycle is

Rc = E[JIT5L] - E[M]

where M is defined as the quantity of drugs that escape

detection in a cycle.

M JIB + JD With probability PbFT(L)

J1 Cg + JO + M With probability Pg + PbFy (L)

where:

Jis = Drug quantity passing through patrol area while CGV
searches a Bad ship

Jo = Drug quantity passing through patrol area while CGV
escorts a Bad ship to shore

JIB = Drug quantity passing through patrol area while CGV
searches a Good ship

Jo - Drug quantity onboard a ship classified as Good
that is actually Bad

If conditional expectations are taken assuming that the Bad

vessels pass through the region according to a Poisson

process with rate XIPb, then

E(M] - X1PbE(J] (S(Ib]+E[D])PbFT (L)+(\PbE[J]E[Ig]+E[M])

(P. +Pb F(L) ) +E[Jo ] Pb FT (L) (2.25)

9
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or

E[M] P bE[J] {Pb ( FT(L)dt-LF-L)+E[D]PbFT (L)+L (Pg+Pb WL)

PbFT (L)

E E[Jo IPb FT (L)
+ Pb FT (L) )(2.26)

where E[Jo] is defined as

NN

Sj(l-Fz (L)) bi

j=1E[( >,L =
Fr (L)

Using the distributions defined in the Example for Model 1

PbXIL J--e M(~ L 1e-UL + P
EM =1 e UL Jn+- + P1-10e-uV

+ (2.27)
(1-0e " " L ) (l-e-UL )

and the long run average reward can be expressed as

R = Equation [2.21] - Equation [2.271 (2.28)
Equation (2.15]

10



III. RESULTS

The optimum investigation time was determined for the

above example for each reward criteria using two methods.

The first method consisted of writing a Monte Carlo

simulation of the patrol cycle using the distributions of

the example and running the simulation using various values

of the investigation time L. Statistics were gathered

during the simulation allowing the calculation of the long

run average reward R. The investigation time was varied

from zero to six hours in increments of two tenths of an

hour. The optimum investigation time was determined by

graphing the long run average reward as a function of

investigation time and finding the value of L which

maximized R. Each cycle was replicated 20,000 times. A

detailed discussion of the simulation can be found in

Appendix A.

THe second method consisted of writing a computer

program for the three equations representing the long run

average reward for the three reward criteria for the

example and solving the equations for various values of the

investigation time L. As in the case of the simulation,

the value of L was varied from zero to six hours in

increments of two tenths of an hour. The optimum

investigation time was again determined by graphing the

%11"



long run average reward as a function of investigation time

and finding the value of L which maximized R.

Figures 1,2, and 3 contain the results of both the

simulation and numerical solution using the distributions

of the examples for reward criteria 1,2, and 3

respectively. The solid line represents the analytical

solution and the circles are the simulation results. The

maximum long run average reward using criteria 1 can be

achieved by using an investigation time between 1.4 and 2.2

hours. The maximum long run average reward using criteria

2 and 3 can be achieved using an investigation time between

1.2 and 1.4 hours. It is interesting to note that, using

the distributions presented in these examples, and

investigation time exists that maximizes all three reward

criteria simultaneously. This occurs at 1.4 hours for the

input distributions. We do not know that this state of

affairs will persist.

12
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IV. SENSITIVITY ANALYSIS

In order to check the robustness of the model with

respect to the underlying assumptions, the simulation was

run exactly as before with the exception that Fz (t) is now

assumed to have a lognormal distribution instead of an

exponential distribution. Each cycle was replicated 20,000

times. Three separate cases are examined. In case A, the

distribution function Fz (t) has the same mean and variance

as the exponential distribution used in the previous

examples. In case B, the distribution function Fz (t) has

the same mean but twice the variance as the exponential

distribution used in the previous examples. Finally, in

case C. the distribution function Fz (t) has the same mean

but four times the variance as the exponential distribution

used in the previous examples.

Figures 4,5, and 6 contain a comparison between the

exponential base case and the lognormal cases mentioned

above for reward criteria 1,2, and 3 respectively. It is

readily apparent that the results for the exponential base

case and lognormal case A, with the same mean and variance,

are different. Furthermore, within the lognormal family of

curves, it can be seen by examining case B and C that the

results vary significantly as the variance increases.

16
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In order to better understand this behavior, it is

helpful to compare the quantiles of T, the time required to

locate an incriminating unit given that J units are

present, for the four distributions.

Quantile Base Case Case A Case B Case C

0.10 0.242 1.604 0.908 0.431

0.25 0.852 2.502 1.467 1.681

0.50 2.465 3.945 2.856 1.681

0.75 6.504 6.858 5.360 3.909

0.90 13.488 12.155 10.333 11.245

It can be seen that some distributions, in particular

the lognormal, cases a, b, and c, have a far greater

likelihood of producing large values of T relative to the

others, such as the exponential distribution used in the

examples. Since the time required to find the first unit

of drugs greatly influences the cycle length, distributions

generating larger values of T will produce significantly

different results. To further verify the accuracy of the

distributions produced by the simulation and the quantiles

listed above, Appendix B contains the calculated quantiles

for lognormal case A produced using analytical distribution

theory.

20



V. CONCLUSIONS

It has been demonstrated that a renewal-reward approach

to modelling the Coast Guard drug interdiction process is

feasible and that it is possible to determine an optimal

investigation time. By considering several different

reward criteria in the model, it is possible to quantify

the costs with respect to the rest of the reward criteria

when one criteria is selected and used to arrive at an

optimum investigation time.

Of the two methods presented to obtain the optimum

investigation time, the simulation approach is the most

flexible. The example distributions and assumptions used

in this thesis were selected because they allowed an

analytical solution to be found. This allowed a comparison

of results between the simulation and numerical solutions,

thus verifying the simulation. As the model assumptions

are changed and different probability distributions

incorporated, the simulation can be easily modified to

reflect these changes whereas an analytical solution may no

longer be possible.

As the model is currently formulated, its usefulness is

questionable due to the sensitivity to the underlying

distribution of the time required to find drugs onboard a

vessel given drugs are present. As demonstrated in the

21
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sensitivity analysis even within a given family of

distributions, the model is sensitive to the distribution

parameters. In order for the model to produce realistic .

results, rigorous data analysis must be conducted to

properly identify this distribution.

The basic service system model may have wider

application, e.g., to combat modelling, where it may be

desirable to investigate a potential target to estimate its

value before committing limited resources. An adaption of

the model may also be of help in allocating resources for

mineral exploration.

22
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APPENDIX A

The simulation is written in Fortran 77. It consists

of a main program and seven subroutines. Uniform [0,1]

random numbers are provided by calling procedure GGUBFS

located in the IBM IMSL single precision library. All real

variables are computed using double precision to minimize

rounding error. Output is directed to three separate

units. Unit 2 contains the calculated rewards for each

increment of investigation time using reward criteria 1, 2,

and 3. Unit 3 contains the cycle length, drug quantity

confiscated, and quantity of drugs missed for each

increment of investigation time. Unit 4 contains detailed

information regarding the cycle for each increment of

investigation time. This information includes the total

number of ships searched, the number of ships that are

good, bad, bad but declared good, and bad identified as

bad. Also included in unit 4 output is the time required

to discover the drugs on a ship declared bad, the quantity

of drugs onboard ships passing through the area while the

CGV is searching a ship, the quantity of drugs missed due

to short investigation time, and the quantity of drugs

confiscated on a bad ship.

The main program controls the starting and final

investigation time, investigation time increment width, and

23



the number of cycles per investigation time to be

simulated. Cycle averages are computed and output directed

to the three units discussed above.

Subroutine CYCLE simulates one patrol cycle and records

all the relevant statistics during the cycle. Subroutine

STIME generates the random search times required to find a

ship from an exponential distribution. Subroutine DTIME

generates the random times required to escort a ship back

to base from an exponential distribution. Subroutine

DRGQTY generates the random quantity of drugs on a BAD ship

from a geometric distribution. Subroutine CLASS determines

the classification of a vessel based on the deterministic

value Pb. Subroutine OPCOST determines the quantity of

drugs missed onboard other ships passing through the area

while the CGV is investigating the current ship.

Subroutine RTIME generates the random times required to

find the first unit of drugs given that j units are

present.

Four versions of this subroutine are listed; one for

the exponential distribution and the other three for the

lognormal case A, B, and C distributions.

24
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FILEi DPSIM FORTRAN Al

C THIS PROGRAM SIMULATES PATROL CYCLES FOR VARIOUS LENGTHS OF
C INVESTIGATION TIMES AND CALCULATES THE VALUES FOR THE THREE
C REWARD CRITERIA. FUNCTION GGUBFS FROM THE IMSLSP LIBRARY IS
C USED TO GENERATE UNIFORM (0,1) NUMBERS.
C

INTEGER I.K,MAXT,NCYCLE,Z
REAL*8 L,C,J,MINC,EC(500),EJ(500),EM(50O), ITIME(500),TOEND,

& R1(500),RZ(500),R3(500),TS,GS,BS,BSG,BSB,EIB,OP,MISS,EIG,
& CATCH,ES,ED,DJ,DSEED
DSEED :995317.110
MAXT 4
NCYCLE = 100
INC z0.20
L =0
TOEND = AXT/INC
DO 200 K zz1,TOEND

L =L +INC
C 0

M: 0
PRINT*,'COMPUTING L =,
DO 100 1 = 1,NCYCLE

CALL CYCLE(DSEED,L,C,J,M,TS,GS,BS,BSG,BSB,EIB,OP,MISS,
& CATCH,ES,ED,BJ,EIG)

100 CONTINUE
ZNCYCLE
WRITE(4o*) L
WRITE(4,523) TS/Z,GS/Z,BS/Z,BSGZ,BSB/Z
WRITE(4,524) EIB/Z,BJ/Z,OP/Z,MISS/Z,CATCH/Z
WRITE(4,525) EIG/Z,ES/Z,ED'Z
WRITE(4,M)

523 FORMAT(lX,5F9.4)
524 FORMAT(lX,5F9.4) -
525 FORMAT(1X,3F9.4)

TS :0

DSG:-O
DSB=O .
GS =0
EIB=O

CATCH=O
ES =0 4
ED =0
BJ =0
OP :0
EIG=O

ITIME(K) c L
EC(K) =C/NCYCLE
EJ(K) a J/NCYCLE
EM(K) a M/NCYCLE
Rl(K) = 1/ECCK)
RZ(K) x EJ(K)/EC(K)
R3(K) a CEJ(K)-EM(K))/EC(K)
WRITE(2,19) ITII4E(K),RICK),RZ(K),R3(K)
WRITE(3,19) ITIME(K),EC(K),EJ(K),EMCK)

19 FORMAT (1X,F6.2,3F9.3)
2OO CONTINUE

STOP 'PROGRAM COMPLETE'
END

SUBROUTINE CYCLECDX,LSTAR,CSTAR,JSTAR,MSTAR,TS,GS,BS,BSGBSB,
A EIB,OP,MISS,CATCH,ES,ED,BJ,EIG),
REAL*8 LSTAR,CSTAR,JSTAR,MSTAR,LAMDA1PLAMDA2,MU,BETA,S,R.QTY,
& 0, LEAK,TIME,PBAD,TS,GS,BSGBSB, EIB,OP,MISS,ES, ED,BJ,BSCATCH,
a EIO,DX
INTEGER NC
CHARACTER*4 TYPE
LANDAI z 1.10
LAMDA2 = 0.3
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FILEt DPSIM FORTRAN Al

MU z0.08
BETA = 0.8
PBAD z0.2

20 TS=TS+l
CALL STIME(DX,LAMDA1,S)
ES=ES+S
CALL CLASS(DXPBAD,TYPE)
IF( TYPE -EQ. 'GOOD') THEN

EIO EIG+LSTAR
GS=GS+1
QTY=O
TIME =LSTAR
CSTAR =CSTAR + TIME + S
CALL OPCOST(DX,LAMDAl,TIME,BETA,PBAD,LEAK)
MSTAR =MSTAR + LEAK
OP=OP+L EAK
GOTO 20

ELSE IF( TYPE .EQ. 'BAD') THEN
BS=BS+l
CALL DRGQTY(DX,BETA,QTY)
BJ=BJ+QTY
CALL RTIME(DX,MU,QTY,R)
IF(R .GT. LSTAR) THEN

EIG=EIG+LSTAR
BSGzBSG+l
TIME =LSTAR
CSTAR cCSTAR + TIME + S
CALL OPCOST(DX,LAMDA1,TIME,BETA,PBAD,LEAK)
MSTAR =MSTAR + LEAK + QTY
OP=OP+LEAK
MISS=MISS+QTY
GOTO 20

ELSEIFCR .LE. ISTAR) THEN
EIB=EIB+R
BSB=BSB+l
CALL DTIME(DX,LAMDA2,D)
ED=ED+D
TIME = R + D
CSTAR = CSTAR + TIME + S
JSTAR 2JSTAR + QTY
CALL OPCOST(DX,LAMDA1,TIME,BETAPBAD,LEAK)
MSTAR =MSTAR + LEAK
OP=OP+LEAK
CATCH=CATCH+QTY
GOTO 21

ELSE
STOP 'ERROR 1'

ENDIF
ELSE

STOP #ERROR 2'
ENDIF

21 RETURN
END

SUBROUTINE STIME(DRSEED,INPUT,OUTPUT)
REAL3E8 INPUT,OUTPUT.,RV,DRSEED
RV=GGUBFS( DRSEED)
OUTPUT x LOG(RV)/C-INPUT)
RETURN
END

SUBROUTINE DTIME(DRSEED, INPUT, OUTPUT)
REAL*8 INPUT,OUTPUT,RV,DRSEED
RV xGGUBFS(DRSEED)
OUTPUT LOGCRV)/(-INPUT)
RETURN
END
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FILE: DPSIM FORTRAN Al

SUBROUTINE DRGQTY(DRSEED, INPUT, OUTPUT)
REALMS DRSEED, INPUT,OUTPUT,RV
RV a GGUBFS(DRSEED)
OUTPUT = AINT(LOG(RV)/(LOG(INPUT)))+1
RETURN
END

SUBROUTINE CLASS(DRSEED, INPUT, OUTPUT)
REALMS DRSEED, INPUT,RV
CHARACTER*4 OUTPUT
RV a GGUBFS(DRSEED)

IF(RV .LE. INPUT) THEN
OUTPUT ='BAD'

ELSE
OUTPUT z 'GOOD'

ENDIF
RETURN
END

SUBROUTINE OPCOST(DRSEEDINPUT1PINPUT2,P1,P2,OUTPUT)
REALMS DRSEED,INPUT1,INPUT2,PlP,OUTPUT,STOR,NSHIP
OUTPUT 2 0
JO = 1/Ci-Pi)
NSHIP =INPUTZIEINPUT1
OUTPUT 2(PZ*NSHIP)*JO

RETURN
END

SUBROUTINE RTIME(DRSEED, INPUT1,INPUT2,OUTPUT)
C EXPONENTIAL DISTRIBUTION - BASE MEAN & VARIANCE

REALMS8 DRSEED,INPUT1,INPUT2,OUTPUT,RV
RV 2 GGUBFS(DRSEED)
OUTPUT = LOG(RV)/(-INPUTI*INPUT2)
RETURN
END

SUBROUTINE RTIMEl(DRSEED, INPUT 1, INPUT2, OUTPUT)
C LOGNORMAL DISTRIBUTION - BASE MEAN & VARIANCE

REALMS8 INPUTl,INPUT2,OUTPUT,STDV,AVG,PI,LOW,Ul,U2,GG,
SDRSEED
INTEGER II,FINISH
GO = LOG(2.0)
LOW = 999999
FINISH x INT(INPUT2)
STDEV xSQRT(GG)
AVG 2-(LOG(INPUTl))- 0.5*GG
PI 3.141592654
DO 662 11 2 1,FINISH
Ul = GGUBFSCDRSEED)
U2 2 GGUBFS(DRSEED)
RV = SQRT(-2*LOGCU1))*COS(Z*PIXU2)3ESTDEV+AVG
RVT = EXP(RV)
IF(RVT .LT. LOW) THEN

LOW x RVT
ENDIF

662 CONTINUE
OUTPUT z LOW
RETURN
END

SUBROUTINE RTIME2(DRSEED,INPUT1, INPUT2,OUTPUT)
C LOONROMAL DISTRIBUTION - BASE MEAN & 2*VARIANCE

REALMS INPUT1DINPUT2,OUTPUT,STDV,AVGPI,LOW,U1,U2,GG,
& DRSEED-
INTEGER II,FINISI
GO LOO(3.0)
LOW u999999
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FILE: DPSIM FORTRAN Al

FINISH 2 INT(INPUTZ)
STDEV = SQRT(GG)
AVG 2-(LOGCINPUT1))- O.5*GG

PI 3.141592654
DO 662 11 l ,FINISH
Ul = GGUBFS(DRSEED)
U2 Z GGUBFS(DRSEED)
RV XSQRT(-2*LOG(Ul) )*COS(2*PI*UZ)3(STDEV+AVG
RVT 2 EXP(RV)
IF(RVT .LT. LOW) THEN

LOW 2 RVT
ENDIF

662 CONTINUE
OUTPUT = LOW
RETURN
END

SUBROUTINE RTIME3(DRSEED,INPUT1, INPUT2,OUTPUT)
C LOONROMAL DISTRIBUTION - BASE MEAN & 4*VARIANCE

REAL*8 INPUT1,INPUTZ,OUTPUT,STDV,AVG,PI,LOW,U1,U2,GG,
& DRSEED
INTEGER II,FINISH
GG LOG(5.O)
LOW 2999999

FINISH 2INT(INPUT2)

STDEV =SQRT(GG)
AVG -(LOG(INPUT1))- 0.5*GG
PI 3.141592654
DO 662 11 = 1,FINISH
UI 2 GGUBFS(DRSEED)
U2 = GGUBFS(DRSEED)
RV z SQRT(-23ELOG(Ul))*COS(23EPI3(U2)*STDEV+AVG
RVT = EXP(RV)
IF(RVT .LT. LOW) THEN

LOW = RVT
ENDIF

662 CONTINUE
OUTPUT =LOW
RETURN
END
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FILE: TSTNUM FORTRAN Al

C THIS PROGRAM COMPUTES THE VALUES OF THE THREE REWARD CRITERIA
C FOR VARIOUS VALUES OF L FOR COMPARISON WITH SIMULATION RESULTS
C

REAL PB,LAMDAl,LAMDA2,BETA,MU,INC,ES,ED,FT, FTBAR,A,ABAR,
& L,TOEND,EC(100), EJ(100), EM(100) ,Rl(100) ,RZ(100),R3(100),
& ITIME(100),PG,B,BB,E,C1,C2,C3,C'.,M1,M2,TEMP,J1,RATE 0
INTEGER MAXTA %
MAXT 6 s
INC 0.20
PS x .20
POG 1-PB
LAMDA1 =1.10
LAMDA2 z 0.3
ES=1/LAMDAl
ED1I/LAMDA2
BETA =0.8
MU =0.08 '

BBETA
BB=1-B
RATE =(LAMDA1*PB)/BB
TOEND MAXT/INC
LzO
DO 100 K =1,TOEND

L=L+INC
E=EXP(-MU*L)
TEMP=1-( B*E)
FTBAR = (BB*E)/TEMP
FT=1-FTBAR
A BA R=P BFT
Az 1-ABAR
C1= ES/ABAR
CZ=ED
C3=(PB/AAR)(CBB/(BMU))ELOG(TEMP/BB)-(L*FTBAR))
C4=( L*A)/ABAR
Jl=(BB/FT)*( (1/(BB*DD))-(E/(TEMP*ETEMP)))
Ml=(C+ED)ERATE+( CL*A3RATE)/ABAR)
M2=BB3E(E/(TEMP*TEMP) )31(/ABAR)3EPB
ITIMECK) z L
EC(K) = Cl+CZ+C3+C.
EJCK) zJ1
EM(K) =M1+M2
RlCK) = 1/ECCK)
RZ(K) = EJ(K)/EC(K)
R3(K) z (EJCK)-EM(K))/EC(K)
WRITE(2, 132) ITIMECK) ,R1(K) ,RZ(K) ,R3(K)
WRITEC3,13Z) ITIME(K),EC(K),EJ(K),EM(K)
HRITE(4,*) L
WRITEC4,133) C1,CZ,C3,C4
WRITE(4,134) J1
WRITEC4,135) M1,M2

132 FORMAT C1X,F6.Z,3F9.3)
133 FORMAT C1X,4F12.5)
134. FORMAT (1X,F12.5)
135 FORMAT (lX,ZF1Z.5)

WRITE(4,*)
100 CONTINUE

STOP 'PROGRAM EXECUTION COMPLETE'
END
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APPENDIX B

Recall that the probability distribution for the

quantity of drugs on a vessel given that it is bad is:

bj = (1 - = 0.8, j = 1,2,3,...

Let

P{T) t I Fr(t) = (1-Fz (t)) b

so1~Fzt

Fa (t) = 1-dF (t)

and

PITgt| = 1 - (1-D)Fz (t) l-Fz (t)1-OF (t) - 1-0-T(t)

now let

1-Fz (tp)I- Fz (t ) : I).

which can be written as

Fz(t.) -

and

Fz (tp) - 1 - F2 (tp) = 1 -Op
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Assuming Fz (t) is lognormal with mean = 2.1792 and standard

deviation = 0.8326 as in distribution Case A

a 1-Op

therefore

tp = EXP P+ OZP(-D)

where Zp(,-o) is taken from tables of the Standard Normal 0

I-Op

distribution.

Using the equation for tp, the following table of quantiles S

was generated:

p tP
J

0.10 1.65
0.25 2.46
0.50 3.95
0.75 6.78
0.90 11.99

It can be seen that these quantile values agree closely

with those presented in the sensitivity analysis.
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